Learning Web-based Procedures by Reasoning over Explanations and Demonstrations in Context

Shashank Srivastava\(^1\)* Oleksandr Polozov\(^2\) Nebojsa Jojic\(^2\) Christopher Meek\(^2\)
\(^1\)University of North Carolina, Chapel Hill
\(^2\)Microsoft Research, Redmond
ssrivastava@cs.unc.edu \{polozov, jojic, meek\}@microsoft.com

Abstract

We explore learning web-based tasks from a human teacher through natural language explanations and a single demonstration. Our approach investigates a new direction for semantic parsing that models explaining a demonstration in a context, rather than mapping explanations to demonstrations. By leveraging the idea of inverse semantics from program synthesis to reason backwards from observed demonstrations, we ensure that all considered interpretations are consistent with executable actions in any context, thus simplifying the problem of search over logical forms.

We present a dataset of explanations paired with demonstrations for web-based tasks. Our methods show better task completion rates than a supervised semantic parsing baseline (40% relative improvement on average), and are competitive with simple exploration-and-demonstration based methods, while requiring no exploration of the environment. In learning to align explanations with demonstrations, basic properties of natural language syntax emerge as learned behavior. This is an interesting example of pragmatic language acquisition without any linguistic annotation.

1 Introduction

People routinely perform repetitive web-based tasks, involving sequences of clicking and typing actions. These include activities such as forwarding emails, booking flight tickets, ordering pizza, etc. These activities largely consist of small sequences of actions in an environment with restricted semantics, and are potentially amenable to automation. In this work, we explore whether an AI agent can be taught such tasks through natural language explanations and a single demonstration by a user (as one might teach such a task to a human assistant).

\[^*\]Work done while the first author was at Microsoft Research.

From the perspective of language understanding, this involves challenges such as converting instructional language to actions, resolving ambiguities through pragmatics, and learning script-like behavior. The web domain is rich in textual, structural and spatial features, allowing for exploration of multiple types of grounding behavior including spatial and visual language understanding, as well as reasoning over semi-structured data. Also, despite its richness, the tasks involved usually do not require much background knowledge.

From a practical perspective, teachable AI assistants can change the way people interact with computers. Today’s conversational assistants such as Alexa or Cortana act on a small number of pre-programmed language commands (e.g., “What is the weather going to be like?”). However, they cannot be taught new functionalities important to a user (as in Figure 1). Enabling users to teach computers personalized procedures through explained demonstrations can make conversational AI systems fundamentally more useful.

In Section 2, we situate our work in the broader body of work on grounded semantic parsing and
learning from language. Section 3 summarizes our framework and dataset. In Section 4, we describe our approach in detail. Here, we investigate a new paradigm for interpreting language in grounded contexts. Instead of mapping statements to logical forms that then execute in a context as in traditional semantic parsing, the method considers the set of possible typing and clicking actions in a context, identifies features of corresponding web elements and their relationships with other elements on the webpage, and aligns these to natural language explanations through a generative model. Section 5 describes the empirical evaluation. Our contributions are:

- An approach towards learning web-based tasks from a single explained demonstration.
- A dataset of explanations and demonstrations for tasks from the MiniWoB framework.
- Empirical results showing that explained demonstrations can be an effective mode of supervision for learning such tasks. Language can significantly reduce the number of samples needed compared to learning from demonstrations alone.

2 RELATED WORK

Semantic Parsing: Supervised models for converting statements to logical forms have long been studied in a wide range of settings (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005; Wong and Mooney, 2007; Kwiatkowksi et al., 2010; Yin and Neubig, 2017). More recent approaches focused on using weaker forms of supervision such as denotations or observations of world state (Berant et al., 2013; Clarke et al., 2010; Krishnamurthy and Mitchell, 2012) and semi-supervised methods aimed at efficient prototyping (Pasupat and Liang, 2015; Wang et al., 2015). These methods require more readily available supervision, such as question/answer pairs for model training, rather than annotations of logical forms. (Artzi and Zettlemoyer, 2013) learn to follow instructions in the context of robot navigation by conditioning parsing on environmental context. Artzi and Zettlemoyer (2011) use conversational feedback as a signal to induce logical forms for individual utterances from transcripts of conversations in a dialog-based setup. Some other recent approaches (Long et al., 2016; Guu et al., 2017) explore learning language from sequences of utterances and interactions in simple environments, which is conceptually similar to our work. Muhlgay et al. (2019) and Guu et al. (2017) explore better strategies to search the space of logical forms. While all of these methods are related to multiple facets of work, our method diverges from them in that the space of candidate logical forms is driven by the constraints of possible actions in an environment rather than the natural language utterance. This guarantees that all of the considered logical forms during search are consistent with executable actions in any novel context. Finally, some recent methods (Andreas et al., 2016) marginalize over latent interpretations of language in context of downstream tasks. We use a similar Bayesian approach, where actions are chosen by marginalizing logical forms (rather than choosing a single interpretation of an explanation).

Interactive Learning from Language: Several frameworks have leveraged natural language supervision to learn new tasks, starting with early work on the SHRLDU system (Winograd, 1972) and Interactive Task Learning (Laird et al., 2017). In particular, several reinforcement learning approaches have been explored in text-based environments for learning strategies, following instruction manuals, game playing, etc. (Branavan et al., 2009; Goldwasser and Roth, 2014; Misra et al., 2018; Narasimhan et al., 2015). These approaches leverage the ability to explore and interact with the environment to learning policies that lead to favourable outcomes. This is different from our goal here, where the agent needs to learn from a single explained demonstration of a task, and no interactivity with the environment is assumed. Some recent approaches have shown language explanations to be effective for learning realistic tasks including relation extraction, concept learning and question answering (Hancock et al., 2018; Srivastava et al., 2017, 2018; Andreas et al., 2018).

In terms of the goal and problem formulation, our approach extends multiples lines of previous work. Quirk et al. (2015)’s work is similar to ours in motivation in learning user-specified recipes, but has no aspects of grounding or demonstrations. (Wang et al., 2016) explore interactive parser training through language games in context of block-world environments. Pasupat et al. (2018) explore mapping natural language to specific elements on complex and realistic web-pages, although not in context of learning from demonstrations. Our framework directly extends previous work on learning web-based tasks from the Mini
3 Framework and dataset

We build on the Mini World-of-bits (MiniWoB) framework (Shi et al., 2017), a collection of web-based tasks initially proposed as a testbed for reinforcement learning agents. The tasks vary in difficulty in terms of the number of actions required, variability between instances of the task, and types of reasoning involved (including clicking specified buttons, forwarding emails and playing tic-tac-toe). See the top half of Figure 2 for an example of a task. Each task consists of a task description (yellow box), and an interactive web interface.

While previous methods have focused on learning sequential decision making to complete these tasks through a mixture of exploration (the framework provides simulators, where correctly completing a task yields a reward) and behavior cloning (by observing multiple demonstrations from human users); our focus is on learning to complete these tasks in a one-shot sense (without any exploration). This is because the one-shot case is a much more realistic scenario for learning web-based procedures from a teacher. In practical situations (where there are no simulators), it would not be feasible for an AI agent to learn to book flights by booking multiple incorrect tickets, or manage a user’s email by sending multiple incorrect emails. On the other hand, a paradigm where the agent attempts to generalize from a single demonstration and explanations can be feasible for many more of such scenarios.

Data characteristics: From a manual analysis of 100 randomly selected explanation sequences and task demonstrations, we find that in almost all cases (97%), the sequence of actions described in the explanations corresponds to the sequence of actions in the demonstration. More than 85% of explanations mention a clicking or typing action, while around 10% identify an entity/string on the webpage that is used in an action in the next step (e.g., the first explanation for the second task in Figure 3). Around 3% of the explanations correspond to conditionals and hypotheticals, which go beyond the scope of our approach. Roughly 15% of the explanations mention multiple entities on the webpage – usually specifying one element in relation to the other (e.g., “the radio button to the right of the text-box”).
Table 1: Major operators in DSL for learning of web-based procedures

<table>
<thead>
<tr>
<th>Return Type</th>
<th>Operator</th>
<th>Example invocation/description</th>
</tr>
</thead>
</table>
| Action | Action Click (element) | Click the icon ...
| | Action TypeString (element, string) | enter the destination ...
| Identify Web Element(s) | HasTag (tag) | find the button ...
| | HasText (string) | that says 'submit'
| | HasTextIncluding (string) | ... the email that mentions Jeanette ...
| | HasPosnHigh() | the button at the top ...
| | HasPosnLow() | the icon next to ...
| | HasPosnRight() | the link below the icon ...
| | HasPosnLeft() | the button at the top ...
| | HasPosnBelow() | ... the email that mentions Jeanette ...
| | HasPosnAbove() | the button at the top ...
| | HasPosnSameRow () | the icon next to ...
| | HasPosnSameCol () | the link below the icon ...
| | RelnNear (element) | the icon next to ...
| | RelnSameRow (element) | the link below the icon ...
| | RelnSameCol (element) | the link below the icon ...
| | RelnLeftOf (element) | the button at the top ...
| | RelnRightOf (element) | the icon next to ...
| | RelnBelow (element) | the link below the icon ...
| | RelnAbove (element) | the button at the top ...
| | HasNumericIndex (int) | the last option in the list ...
| Identify String(s) | IndexedWord(int) | the last word ...
| | BeforeWord(string) | the city after "from:"
| | AfterWord(string) | the city after "from:"
| | FindMatchingContext (string, context) | enter "Seattle" as the source city ...

3.2 DSL for semantic parsing

We define a domain specific language (DSL) for describing web-based procedures in terms of DOM elements by expanding on the constraint language in Liu et al. (2018). The DSL operators correspond to actions on DOM elements, element features and relations between them. The DSL defines the vocabulary of logical forms for parsing of user explanations, and grounds sensors and effectors in the web environment. Table 1 summarizes the DSL. There are three types of operations: (1) click and type actions on specified web elements (with a specified string, in case of a type action), (2) operations that filter elements on a page that satisfy a criterion, and (3) operations that filter strings based on a criterion. We include a special operator FindMatchingContext to accommodate cases in which the users provide explanations for an instance of a task with specific arguments mentioned in the task description (e.g., see the last row in Table 1). In this case, the operator can pick out the corresponding argument for the new instance by looking at the surrounding context in the new task description. The evaluation of logical forms in the DSL in the context of a webpage consists of set operations over all DOM elements on the webpage (and text-spans of up to two tokens for string operators). For example, the logical form HasTag(type=button) will evaluate to the set of elements on a page that have a HTML tag type with value button.

4 Learning from explanations and demonstrations

Our approach for learning web-based tasks, which we call LED – for Learning from Explained Demonstrations (LED). We prefer logical forms (l) that are both consistent with the user demonstration (d) in the context (c), and relevant to the user’s explanations (x).

Figure 4 illustrates this for a toy-example, where the context consists of a web-page with three elements, the demonstration consists of a single action, and a corresponding explanation is provided. Based on the observed demonstration (that elem3 was clicked), it is hard to infer the reason behind clicking it. Multiple logical forms in the DSL can be consistent with clicking elem3 in this context, e.g., it is at the top of the page, its color is blue, etc. However, these interpretations would not justify the provided explanation as those logical forms are not relevant to the explanation. Modeling relevance between logical forms and explanations can help identify the reasoning behind user demonstrations.

This framing diverges from traditional semantic parsing, where statements x are mapped to logi-

1 We do not infer individual logical forms corresponding to an explanation, since we marginalize over all logical forms that resolve to the same action in a context.
cal forms l (e.g., database queries), which are then are executed against a context e (e.g., a knowledge base) to get a denotation (corresponds here with a demonstration) d. i.e., $d = [l(x)]_e$. In this model-theoretic view of semantics, parsed logical forms are not informed by the environmental context until execution. In comparison, LED roots logical forms in the observed context, and thus pragmatic consistency is ensured by design.2 We maximize the log-likelihood of observing the explanations given the demonstration in a grounded context:

$$
\mathcal{L}(\theta) = \log p(x|d, c) = \log \sum_l p(x|l) \ p(l|d, c) \quad (1)
$$

Here, the first term corresponds to scoring relevance between logical forms and explanations (modeled using a semantic parsing model). The second term enforces consistency between candidate logical forms and the demonstration in the context, and can be deterministically evaluated. As we see in Section 4.2, consistency is enforced by temperature-based annealing during training.

4.1 Grounded Logical forms as latent variables

Eqn 1 marginalizes over latent logical forms. To make this tractable, we represent a logical form in a grounded context as an assignment of a tuple of discrete variables, $l := (e_0, f_0, r, e_1, f_1, a, t, f_t)$. These variables indicate things such as which DOM element is acted upon (e_0), if its relation (r) with another element on the page (e_1) is relevant, and so on. These are defined below.

- $e_0 \in \text{domElements}(c)$ denotes the DOM-element on which an action is performed. (e.g., $e_0 = elem3$ in Fig 4) This is observed from the demonstration, thus $p(e_0) = \mathbb{I}_{e_0=elem3}$.
- $f_0 = (f_{i0} \ldots f_{in_F})$ is a set of selector variables, where f_{i0} denotes if feature i of element e_0 is relevant for choosing it. Its domain is $\{\phi \cup \text{F}_i\}$, where F_i is the range of values feature i can take. $f_{i0} = \phi$ denotes that the feature was not relevant for choosing e_0 (e.g., $f_{i0\text{color}} = \phi$ in Fig 4). If $f_{i0} \neq \phi$, it can only take the observed value of the feature for e_0 in the context (e.g., $f_{i0\text{tag}} = \text{square}$ in Fig 4). In Table 1, these correspond to operators that return web-elements and have names with prefix Has.

- r denotes if relation r between e_0 and another element on the webpage is relevant for choosing it. Its domain is $\{\phi \cup R\}$, where R is the set of (binary) relations between elements in the DSL. In Table 1, these are operators that have names with prefix Reln. $r = \phi$ denotes that the no relation was relevant for choosing e_0. If $r \neq \phi$, it can only take the value of a relation that exists between e_0 and another element. (e.g., in Fig 4, r can’t take the value LeftOf, since $elem3$ is the rightmost element in the context). Our choice of having a single variable for r disallows logical forms with multiple or nested relations. This was guided by an analysis of our dataset, where none of the collected explanations show such behavior.

- e_1 denotes that relation r between elements e_0 and e_1 is relevant for choosing e_0. Its domain is $\{\phi \cup \text{domElements}(c)\}$. $e_1 = \phi$ if and only if $r = \phi$, i.e. if no relation is relevant for choosing e_0. If $r = \text{reln}$, e_1 can only take values of elements such that $\text{reln}(e_0, e_1)$ is true in the context.

- $f_1 = (f_{i1} \ldots f_{in_F})$ is a set of selector variables, where f_{i1} denotes if feature i of element e_1 is relevant. e.g., for ‘click the checkbox next to the button that says submit’, the HasText feature of the button is relevant). $f_{i1} = \phi$ denotes that feature i was not relevant. If $f_{i1} \neq \phi$, it can only take the observed value of the feature for e_1.

- a denotes the action performed on e_0 (click or type). This is observed from the demonstration.

- t denotes the string to type, if $a = \text{type}$. This is observed from the demonstration (and is a substring of the task description text).

- $f_t = (f_{i1} \ldots f_{in_F})$ is a set of selector variables, where f_{it} denotes if the text feature j of t is relevant for choosing it (In Table 1, operators with a string return type correspond to text features).

Inverse Semantics:

Assignments of values to these variables represents a search in the DSL space, since given any context, there is a mapping a from logical forms to an assignment of these variables. A key idea here is that, borrowing from program synthesis, we can leverage the inverse semantics of operators in the DSL (Polozov and Gulwani, 2015) to guarantee consistency of logical forms with the grounded context. i.e., at any step, the space of candidate logical forms we consider is consistent with the observed demonstration. This is possible because in our case, computing the inverse semantics for all operators in the DSL is feasible.4

2For example, in Figure 4, $\text{click}(\text{tag}=\text{triangle} \ & \ \text{RightOf}(\text{square}))$ won’t be considered for the provided utterance, as it is inconsistent with the context.

3If condition denotes an indicator function for condition.

4Since there is only a relatively small number of candidates
As just described, our approach will use the context of the webpage to leverage DSL inverse semantics to maintain an implicit set of candidate logical forms that are consistent with the observed demonstration. We will use variational inference to infer the logical forms that are most relevant to the seen explanations, and choose the action to take based on the inferred distribution over logical forms.

4.2 Model Description

In Eqn 1, the second term corresponds to a prior probability over logical forms given a demonstration and context (webpage). Our representation of logical forms as latent variable assignments (from Section 4.1) enables us to decompose this probability into local factor distributions. We choose these local priors to correspond to distributions that are uniform over assignments that are consistent, and has zero support otherwise, similar to previous work on pragmatic reasoning (Frank and Goodman, 2012; Monroe et al., 2017). In other words, these distributions are proportional to indicator function over valid assignments of variables in each factor. As seen below, these define a prior over l that is also proportional to a simple indicator function over values of l that are consistent with the observed demonstration and context.

$$p(l | d, e) = p(e_0, f_0, r, e_1, f_1, a, t, f_t | d, e) = p(e_0 | d) \cdot p(f_0 | e_0, c) \cdot p(e_1 | r(e_0, c) \times p(f_1 | e_1, c) \cdot p(a, t | d) \cdot p(f_t | t, c)$$

$$\propto I_{\text{Valid}(e_0, d)} \cdot I_{\text{Valid}(f_0, e_0, c, a)} \cdot I_{\text{Valid}(e_1, r, e_0, c, a)} \cdot I_{\text{Valid}(f_1, e_1, t)} \cdot I_{\text{Valid}(a, t, d)} \cdot I_{\text{Valid}(f_t, t, c)}$$

(2)

Substituting this in Eqn 1 and using Jensen’s inequality, any distribution q over logical forms provides a lower-bound on the log-likelihood:

$$L(\theta) \geq \sum_l q(l) \log \frac{p(x|l) I_{\text{Valid}(l)}}{q(l)}$$

$$= \sum_l q(l) \left(\log p(x|l) + \log I_{\text{Valid}(l)} \right) + H_q$$

(3)

where H_q is the entropy for distribution q. In Sec 4.1, we represent l as a tuple of variables. Next, we make a mean field approximation by assuming the distribution $q(l)$ decomposes as:

$$q(l) = q(e_0, a, t) \prod_i q_f_0, q_e_1, q_r \prod_i q_t_i, \prod_j q_f_t_j \quad \text{(4)}$$

Focusing on the unobserved variables (given a demonstration), we have $q(l) = q_i(f_0, q_e, q_r, q_f_1, q_f_t)$.\(^5\)

Parsing model: We assume that the probability of an explanation decomposes into the probability of individual words as $\log p_d(x|l) = \sum_{w \in x} \log p(w|f_0, r, f_1, f_t, a)$. Further, we assume that individual words are generated from features, relations and actions in the logical form as:

$$p(w|f_0, r, f_1, f_t, a) = \frac{\prod_k (f_{a, r, f_1, f_t}, a)}{\sum_k b_{kw} \cdot (\log p(w|k, z_{kw}) + \log p(z_{kw})) + H_{kw}}$$

(5)

Here, k is an index over values of f_0, r, f_1, f_t and a. z_{kw} denotes an alignment between a particular value of a feature, relation or action (k) and word w in the explanation, in which case the word is generated from the distribution $p(w|k)$. The presence of a summation inside of a logarithm makes maximizing this objective hard. We again use Jensen’s inequality to get a bound by introducing variational distributions b_{kw} over alignments z_{kw}. b_{kw} can be thought of as representing the proportions of an explanation word contributed by specific feature values, relations or actions k in the logical form. Each $p(w|k)$ is parameterized as a multinomial distribution, θ_{kw}, over the vocabulary.

Training and Inference: Our model training follows a variational EM approach, where in the E-step, we perform inference for the latent logical form variables and alignment proportions, keeping the model parameters as fixed. In the M-step, we update the parameters, θ_{kw}, taking the variational distributions and alignments as fixed. Combining Eqn 2, Eqn 3 and Eqn 5, we get:

$$L(\theta) \geq \sum_l q(f_0, q_e, q_r, q_f_1, q_f_t) \left(\sum_k b_{kw} \cdot \left(\log p(z_{kw}) + H_{kw} \right) \right) + H_{f_0} + H_{e_1} + H_r + H_{f_1} + H_{f_t}$$

(6)

Maximizing this objective w.r.t. the variational

\(^5\)Using q_i as shorthand notation for the product of variational distributions $\prod_i q_{f_0}$, and so on.
We also explore a variant that models (Eqn. 8) correspond with emission probabilities taking low the button an annealing based strategy, where we incremen-
tally increase the penalty for log(0) terms during training as \(-N/2\) for the \(N\)th EM iteration (for large \(N\), this also is a prohibitive penalty). In our experiments, this was seen to improve training.

In the M-step, we maximize the objective w.r.t. \(\theta_k\):

\[
\theta_k(w) \propto \exp \left(\sum_{n} \sum_{w \in x_n} b_{k,w} q_k \right) \tag{9}
\]

The one exception is a special copy mechanism for string-valued features. For these, \(\theta_{kw}\) is not learned, but simply corresponds to an indicator function denoting if \(w\) matches the value of the feature. e.g., \(\theta_{HasText(‘submit’)}; ‘submit’ = 1\).

5 Experiments

We next discuss LED’s empirical performance.

5.1 Procedure Learning performance

First, we evaluate the method for completion rates on tasks from the MiniWoB framework. Following Liu et al. (2018), we filtered 40 tasks from the MiniWoB framework (Shi et al., 2017) that require only clicking and typing actions. During training of the LED model, we sample an explained demonstration for each of the 40 tasks, and models are trained on the aggregate of these (the model sees one explanation-demonstration pair for a task). For testing, models are evaluated on a new instance of a task, where the model greedily computes the demonstration \(d\) (specifying a click or typing action on a web element in the current DOM) that would maximize \(p(x|d, c)\) (see Eqn 1) and executes the corresponding actions. The method then moves to the next explanations. This requires an enumeration of all possibly clicking and typing actions that can be performed in a context \(c\) at every step.\(^{8}\)

Since the number of actions in a demonstration can be different from the number of steps in the explanation, we heuristically align the sequence of actions in demonstrations to the sequence of sentences in the explanations in our dataset based on a small manually defined list of trigger words.

A direct comparison of LED with other approaches is not possible, since they differ considerably in the type of supervision and resources used. Nonetheless, here we compare LED’s performance with the following two methods to get a coarse sense of its effectiveness:

\(^{6}\)The optimal value for the concave problem \(\sum w x_j \log y_j / \sum x_j\) s.t. \(\sum x_j = 1\) is achieved when \(x_j^* \propto y_j\).

\(^{7}\)E.g., this won’t differentiate between “click the URL below the button” and “click the button below the URL”.

\(^{8}\)This is possible since the set of actionable elements on a webpage, and the set of candidate strings that can be typed (up to two length tokens from task description) are not large.
Figure 5: Task-completion rates for MiniWoB tasks with varying difficulty. Rates are calculated over 100 new instances of each task.

1. **SemParse**: This is a supervised semantic parsing baseline, trained on a manually annotated dataset of around 300 explanations labeled with their DSL logical forms (covering roughly one annotated explanation sequence for every task). The model is based on a sequence-to-sequence neural semantic parser from Jia and Liang (2016). During testing, the method parses the sequence of explanations to logical forms, and sequentially (attempts to) executes the predicted logical forms. In contrast, **LED** requires no logical form annotations. However, it leverages the inverse semantics of the DSL operators, which may not be feasible for every DSL.

2. **BC+RL**: This is the original approach from Shi et al. (2017), who proposed the MiniWoB framework and consists of behavior cloning and exploration. This learns a task by supervised learning on about 200 demonstrations, followed by exploration via reinforcement learning to fine-tune the learned policies. In comparison, **LED** requires no logical form annotations. However, it leverages the inverse semantics of the DSL operators, which may not be feasible for every DSL.

Figure 5 shows task completion performance for different methods on a subset of tasks from the MiniWoB framework. We compute task completion rates over 100 randomly selected test instances of each task. The differences between instances involve different arguments for a task and differences in the state of the environment. Firstly, we note that the **LED** approaches consistently outperform **SemParse** across all tasks. This is a strong result, since **LED** does not have access to logical form annotations for explanations as **SemParse** does. This strongly indicates that knowledge of the pragmatic context is important for language interpretation in this domain, since our approach which roots logical forms in observed demonstrations performs better or as well for all but one task.

We note that there is a large variance among tasks in terms of amenability to learning from explanations or exploration. For tasks like tic-tac-toe, explanation-based methods perform poorly as expected, since learning the game involves reasoning that is hard to explain through step-wise explanation of a demonstration, but can be more naturally learned from exploration. On the other hand, explanation-based methods perform well on tasks that are easily expressed through language. On the whole, the **LED** approaches are roughly competitive with **BC+RL**, while requiring no exploration and only a single demonstration. Note that unlike exploration-based methods, **LED** and **SemParse** can potentially generalize to new tasks during testing (where no demonstration is seen during training) from explanations and context only.

We also note that **LED(+Syntax)** generally outperforms vanilla **LED**, although the effect size is not large. However, this trend is statistically significant (binomial test, \(p < 0.1 \)).

5.2 Language Interpretation performance

Next, we quantitatively evaluate the parsing performance of our method at the level of individual explanations (rather than task completion rate). For this, we evaluate the trained models on explanations from a set of 80 demonstrations from the dataset (unseen during training), where we calculate the match between the predicted action from an explanation in the context, and the actual action in the logged demonstration (accuracy of prediction rates over 100 randomly selected test instances of each task). The differences between instances involve different arguments for a task and differences in the state of the environment. Firstly, we note that the **LED** approaches consistently outperforms **SemParse** across all tasks. This is a strong result, since **LED** does not have access to logical form annotations for explanations as **SemParse** does. This strongly indicates that knowledge of the pragmatic context is important for language interpretation in this domain, since our approach which roots logical forms in observed demonstrations performs better or as well for all but one task.

![Table 2: Semantic parsing performance (predicted action match) for interpreting individual explanations in a context](image_url)
5.4 Common Errors

From a qualitative error analysis, we note that most errors in task learning come from three sources. Firstly, although the method learns reasonable mappings between words and semantic operators, the method often misaligns attributes of different elements, even with the LED(+Syntax) model. This is likely because the training data is not adequate to learn these constraints, and methods that enforce these through informed priors maybe more effective. Another common error is due to challenges with anaphora resolution and discourse referents. Finally, a large number of explanations are not explicit in describing the sequence of actions required to perform a task, and some needed actions remain unmentioned. While this would be expected in realistic computer-human interactions, fixing these errors is beyond the scope of the current method.

6 Conclusion

Our work here is a step in the direction of teachable AI agents that can learn new behavior from conversational interactions with ordinary users. In terms of technique, our bottom-up approach to generating logical forms ensures consistency between interpretations and the ambient context during search. Conversely, this would be complicated in domains with rich composition and nesting in logical forms, which go beyond simple features and relations. E.g., “click the third email from Jeanette”, and where modeling inverse semantics is infeasible.

Here, we posed the learning of web-based tasks as similar to instruction-following problem, with no aspect of interactivity or exploration of the environment. In future work, the possibility of learning from a mix of explanations, exploration and a limited budget of interaction with the environment can be explored. Also, language grounding models that incorporate richer alignments between explanations and demonstrations can lead to more effective learning. Since LED only requires tokenization as pre-processing, it can possibly extend to low resource scenarios. In terms of problem framing, interactive use-cases that enable the agent to ask questions when it is confused may also be realistic. Future work can also explore curriculum learning in this domain, by first learning simpler tasks, which can be compositionally invoked in explanations for complex tasks.
References

