
Personalized Mathematical Word Problem Generation

Oleksandr Polozov* Eleanor OõRourke* Adam M. Smith* Luke Zettlemoyer * Sumit GulwaniÀ Zoran Popovił*

* University of Washington ÀMicrosoft ResearchRedmond

{polozov, eorourke, amsmith, lsz, zoran}@cs. washington . edu sumitg@microsoft . com

Introduction
Word problems are notoriously difficult for children and adults alike.1

Many people find them much more difficult than the equivalent
symbolic representations (see comparison on the right) .2 This
phenomenon is caused by language understanding, conceptual
knowledge, discourse comprehension,and other aspectsrequired to
build a mental representation of a word problem.2,3

Moreover, many students find word problems unconnected to their
lives and artificial .4 This perception can be altered with problem
personalization: individual interest raises understanding and
engagementin a problem solving process (which, in turn, increases
ÓÔÕÄÅÎÔÓȭperformance).5 However, personalizing word problems in a
textbook is impractical, and would place unreasonable burden on
teachers(who would needto be aware of everyÓÔÕÄÅÎÔȭÓinterests). Numerical form Word problem form

Our system is a first step to an ideal pedagogy,which involves an
individually crafted personalizedprogressionof word problems:

Å Automatic : a mathematical model, a plot, and a discourse of a
problem are generatedautomatically from generalspecifications.

Å Personalized : students can set preferencesfor a word ÐÒÏÂÌÅÍȭÓ
setting,characters,and their relationships.

Å Sensible: we enforcecoherencein a synthesizedplot using a novel
techniquecalleddiscoursetropes.

Å Fit for scaffolding : varying requirements to different layers of a
word problem enables a tutor to scaffold a unique educational
progression.

Word problem generation synthesis of constrained logical graphs

natural language generation

Å 1 problem

Å Math: addition

Å Type: counting

Å Simple English

Å Fantasy setting

Å Characters:

- girl Ellie

- boy Smaug

- adversaries

require_setting(fantasy).
require_math(plus(any , any)). ˭ Ƨơ ˯ ơƨ
require_character(cAlice , ("Alice" , female)).
require_character(cElliot , ("Elliot" , male)).
require_relationship(adversary , cAlice, cElliot).

Logic generation
Our technique uses answer set programming (ASP) 6 in steps:

1. Equation Generation

a. Guessan equation tree Ὁ.
b. Deduce whether math requirements are covered by Ὁ.
c. Forbid invalid trees that do not cover the requirements.

ρς

ώὼ

2. Plot Generation

Generates a logical graph ꞉ , which represents a word
problem plot that models the equation Ὁ:

Definition. A logical graph ꞉ is a tuple ȟ꜡ꞈȟꜟ where:
Å i꜡s a set of entities. Every entity Ὡȡ†ɴ h꜡asa corresponding

ontologytype†. Typesform a hierarchy tree, denoted†Ṍ†.
Å ꞈ is a set of facts. Every fact Ὢᶰꞈ has a corresponding

ontology relation ד ÒÅÌÁÔÉÏÎὪ. Every relation hasד a set
of named arguments ÁÒÇÓד . For each fact Ὢᶰ ,ꞈ every

argument ὥȡ†ᶰÁÒÇÓÒÅÌÁÔÉÏÎὪ is associated with an

entity Ὡȡ†ᶰ s꜡uchthat†Ṍ†, written asὪ ὩȟȣȟὩד .
Å ꜟ is a set of temporal (4) or causal (#) fact connectives.

A connectiveὧɴ iꜟs a tupleὪᵼ Ὢwhere tag ὸɴ 4ȟ#.

Example. ꜡ Ὧȡ ȟὨȡ ȟὧȡ ȟὧȡ ȟὧȡ

:ꞈ
Owns1 Ὧȟὧ , Owns2 Ὠȟὧ , SlaysὯȟὨ, AcquiresὯȟὧ ,
TotalCountὧȟὧȟὧ , OwnsоὯȟὧ , Unknownὧ

:ꜟ hǿƴǎᵼ4{ƭŀȅǎȟhǿƴǎᵼ4{ƭŀȅǎȟ{ƭŀȅǎᵼ#!ŎǉǳƛǊŜǎ

Tutor requirements Student requirements

ρς

ώὼ

TotalCount
υchests

ρςchestsὼ
ḗ

% Guess a single type for each entity.
1 { entity_type(Entity , Type): concrete_type(Type) } 1 ᴺ entity(Entity).
instanceof(Entity , Type1) ᴺ entity_type(Entity , Type), subtype(Type, Type1).
% Guess a relation and an assignment of typed arguments for each fact.
1 { fact_relation(Fact , Rel): relation(Rel) } 1 ᴺ fact(Fact).
1 { fact_argument(Fact , K, Entity): instanceof(Entity , Type) } 1 ᴺ

fact_relation(Fact , Rel),
K = 1..@ arity(Rel), argument_type(Rel , K, Type).

% Deduce whether a logical graph ꞉models an equation Ὁ. Its math
% relations should form a subgraph whose shape is isomorphic to Ὁ.
models(Eq, Fact) ᴺ fact_relation(Fact , Rel), math_skeleton(Rel , Skel),

shape_matches(Eq, Fact , Skel).
shape_matches(Eq, Fact , Skel) ᴺ ƛ % Deduce inductively from arguments.

% Forbid solutions that do not model the required equation.
ᴺ equation(Eq), #count { Fact : matches(Eq, Fact) } == 0.

ȡ꞉

Discoursetropesare literary constraints on the logical graph,
mined from typical narratives in a setting. Each fact Ὢᶰꞈ
must be driven either by math, or by somediscoursetrope.

3. Discourse Tropes

Plausible logical situations Engaging story narrative!

Definition. A discourse trope ꜠ is a constraint on ꞉ of form:
ᴆᶅὼṒ ȡ꜡ɮ ᴆὼ ᵼ ᴆɱώṒ ȡ꜡ɰ ᴆὼȟᴆώ

Example. Ȱ! ×ÁÒÒÉÏÒ ÓÌÁÙÓ Á ÍÏÎÓÔÅÒ ÏÎÌÙ ÉÆ ÔÈÅ ÍÏÎÓÔÅÒ ÈÁÓ ÔÒÅÁÓÕÒÅÓȱȡ
ύᶅȟάᶰ ȡ꜡3ÌÁÙÓύȟά ᵼ ὸɱɴ ȡ꜡/×ÎÓάȟὸ

Some relations ד in ꞉model mathematical operations
(e.g. TotalCount modelsȰὸέὸὥὰὧέόὲὸ ὧέόὲὸȱɊ.
Their union should isomorphically model the equationὉ.

ᶬ꞉ȡ-ÏÄÅÌÓȟ꞉ὙὩή᷈Ễ 3QBF formula! NP

Solvingdiscoursetrope validation in ASP:
1. Eliminate innermost wɱith skolemization.
2. Apply saturation technique7 to enforceᶬᶅ validation:

% Example discourse trope: ὥᶅȟὦɴ ȡ꜡/×ÎÓὥȟὦ !᷉ÃÑÕÉÒÅÓὥȟὦ.
discourse(forall(a,b), premise(or(owns(a,b), acquires(a,b)))).

% Assign each formal variable ὠᶰὥȟὦ to some entity Ὡɴ .꜡
bind(Var, Entity): entity(Entity) ᴺ var(Var).
sat(Xs, F) ᴺ ƛ % Deduced if ɮ ᴆὼ holds under the current assignment ᴆὼ.

valid ᴺ discourse(Xs, F), sat(Xs, F).
bind(Var, Entity) ᴺ valid, var(Var), entity(Entity). % Saturate.
ᴺ not valid.

Nondeterministically
pick an assignment

of ᴆὼto some entities Ṓ꜡

Valid
counterexample

for ɮ ᴆὼȩ

sat(Xs, F) and valid
cannot be deduced ᵼ

not an answer set

sat(Xs, F) and valid
are deduced

Saturate the answer set (i.e. include all possible ὔ
bind(Var, Entity) statements in it)

A saturated answer
set subsumes any

other answer set ᵼ
emitted only if all of

its subsets are invalidY

N

Dragon Smaug has 12 chests of treasures.
Knight Ellie has 5 chests of treasures.

She slays the dragon, and takes his treasures.
How many chests does the knight have?

Natural language generation

4. Sentence ordering

a. Convert eachfactὪᶰꞈto a sentenceusing a database
of primitive templates.

b. Temporal and causal connectivesꜟdefine a partial
ordering betweensentencesᵼBuild a linear narrative.

5. Reference resolution

Knight Ellie slays Dragon Smaug.

How many chests of treasuresdoesKnight Ellie have?

Dragon Smaughas12 chests of treasures.

Knight Ellie takes 12 chests of treasures.

Knight Ellie has 5 chests of treasures.

ÅNon-repetitive references:ȰÄÅÓÃÒÉÂÅ ÔÈÅ ÅÎÔÉÔÙ ×ÉÔÈ ÄÉÆÆÅÒÅÎÔ
features every ÔÉÍÅȱ
ÅUnambiguous references:ȰÄÉÆÆÅÒ from all other previously
ÍÅÎÔÉÏÎÅÄ ÅÎÔÉÔÉÅÓȱ

rᶅeference: find a minimal unambiguous subset of
its descriptive features.8

(or a Wizardry variation)

Professor Smaug assigns Ellie to make a luck
potion. She had to spend 9 hours first reading
the recipe in the textbook. She spends several

hours brewing 11 portions of it. The potion has
to be brewed for 3 hours per portion. How

many hours did Ellie spend in total?

Evaluation
Goal: evaluategenerationtechniquesby assessingcomprehensibility

and solubility of the word ÐÒÏÂÌÅÍÓȭcontent.

Study design:
Å Sample25 generatedword problems with sufficient variability .
Å Matchwith 25 equivalent SingaporeMath9 word problems.
Å Conduct2 AmazonMechanicalTurk studies(1000 subjectseach):

A. Evaluate the word problem text with respect to given questions
on a forced-choiceLikert scaleɉȰȱȟȰᴜȱȟȰȱȟȰȱȟmappedto 1-4).

Q1: How comprehensible is the problem? How well did you

understand the plot?

Q2: How logical and natural is the sentence order?

Q3: When the problem refers to an actor (e.g. with a pronoun or a

name), is it clear who is being mentioned?

Q4: Do the numbers in the problem fit its story (e.g. it would not

make sense for a knight to be 5 years old)?

B. Solvethe word problem. Correctnessand solving time are recorded.

Findings
V Generatedproblems are rated equally or slightly less comprehensible

than the textbook problems (… ρωσȢυςȟὴ πȢππρȟὠ πȢττ).
V Generatedproblems are generally comprehensible ‘ σȢτυ σȢφυ.
V Solubility of generated problems is indistinguishable from textbook.*

* After removing 4 outliers with unclear language.

References
1. Lieven Verschaffel. Using retelling data to study elementary school ÃÈÉÌÄÒÅÎȭÓ

representations and solutions of compareproblems. Journalfor Researchin Mathematics
Education, pages141ɀ165, 1994.

2. DeniseDellarosaCummins,Walter Kintsch, Kurt Reusser, and RhondaWeimer. The role
of understanding in solving word problems. Cognitivepsychology, 20(4):405ɀ438, 1988.

3. Robin F Schumacherand Lynn S Fuchs. Does understanding relational terminology
mediateeffectsof intervention on compareword problems?Journalof experimentalchild
psychology, 111(4):607ɀ628, 2012.

4. JacqueEnsign. Linking life experiencesto classroom math. PhD thesis, University of
Virginia, 1996.

5. Janis M Hart. The effect of personalized word problems. Teaching Children
Mathematics, 2(8):504ɀ505, 1996.

6. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer
set solving in practice. SynthesisLectures on Artificial Intelligence and Machine
Learning, 6(3):1ɀ238, 2012.

7. Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set
programming: A primer. In ReasoningWeb. Semantic Technologiesfor Information
Systems, pages40ɀ110. Springer,2009.

8. Emiel Krahmer and Kees Van Deemter. Computational generation of referring
expressions: A survey. ComputationalLinguistics, 38(1):173ɀ218, 2012.

9. Frank Schaffer Publications. SingaporeMath 70 Must-Know Word Problems,Level 3
Grade4. Carson-DellosaPublishing, LLC,2009.

