
Personalized Mathematical
Word Problem Generation

Oleksandr Polozov* Eleanor O’Rourke* Adam M. Smith*

Luke Zettlemoyer* Sumit Gulwaniǂ Zoran Popović*

* University of Washington

ǂ Microsoft Research

1

Word Problems

Suzy is ten years older than Billy, and next year she will
be twice as old as Billy. How old is Suzy now?

2

Evelyn went to the store 8 times last month. She buys
11 stickers each time she goes to the store. How many
stickers did Evelyn buy last month?

You attended high school for 4 years. Each year you
bought 7 new textbooks. How many textbooks do you
have at home now?

Best known way to teach mathematical modelling skills.

Word Problems
Suzy is ten years older than Billy, and next
year she will be twice as old as Billy. How old
is Suzy now?

3

Evelyn went to the store 8 times last month.
She buys 11 stickers each time she goes to
the store. How many stickers did Evelyn buy
last month?

You attended high school for 4 years. Each
year you bought 7 new textbooks. How many
textbooks do you have at home now?

• Notoriously difficult as compared to algebra!

Word Problems
Suzy is ten years older than Billy, and next
year she will be twice as old as Billy. How old
is Suzy now?

4

Evelyn went to the store 8 times last month.
She buys 11 stickers each time she goes to
the store. How many stickers did Evelyn buy
last month?

You attended high school for 4 years. Each
year you bought 7 new textbooks. How many
textbooks do you have at home now?

• Notoriously difficult as compared to algebra!

Cummins, Denise Dellarosa, et al. "The role of understanding in solving word problems." Cognitive psychology 20.4 (1988): 405-438.

Word Problems
Suzy is ten years older than Billy, and next
year she will be twice as old as Billy. How old
is Suzy now?

5

Evelyn went to the store 8 times last month.
She buys 11 stickers each time she goes to
the store. How many stickers did Evelyn buy
last month?

You attended high school for 4 years. Each
year you bought 7 new textbooks. How many
textbooks do you have at home now?

• Notoriously difficult as compared to algebra!

• Perceived as boring, artificial, unconnected to the students’ lives ⟹ not learnt

Computer-Aided Pedagogy

• Automatically crafted problem progression:

Control over complexity dimensions

 Per-student personalization

Adaptive progression

 Toolkit for data-driven research

Enormous design space ⇒ Declarative specification

6

Workflow

Problem

Generator

5 problems

Test multiplication:

𝑥 = 𝑦 ⋅ 𝑧
Time/travel only

Simple language

…

Fantasy/SciFi world

Use me and my friends

as characters

5 problems

Test multiplication:

𝑥 = 𝑦 ⋅ 𝑧

7

8

Duke Randall’s

countryside consists of

11 towers, surrounded by

3 villages each. He and

baron Luke are at war.

Luke has already occupied

16 villages with the help

of wizard Caroline. How

many villages are still

unoccupied by the baron?

Workflow

Logic Generation

5 problems

Test multiplication:

𝑥 = 𝑦 ⋅ 𝑧
Time/travel only

Simple language

…

Fantasy/SciFi world

Use me and my friends

as characters

5 problems

Test multiplication:

𝑥 = 𝑦 ⋅ 𝑧

9

Language Generation

Problem Generator

Problem Logic
Generation

• Plot generation

• Discourse tropes

Natural Language
Generation

• Sentence ordering

• Reference resolution

10

Problem Generator

Problem Logic
Generation

• Plot generation

• Discourse tropes

Natural Language
Generation

• Sentence ordering

• Reference resolution

11

Problem Generation =

Declaratively constrained
synthesis of logical graphs

that represent abstract plots

12

Problem Logic Generation

• Math: addition

• Setting: Fantasy

• Character: Ellie

13

Step 1: Equation

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

14

Step 2: Plot Relations

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

15

Step 2: Plot Relations

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

16

Step 2: Plot Relations

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

17

Step 2: Plot Relations

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

18

1 { assign(N, C): color(C) } 1 ← node(N).

← edge(N1, N2),
assign(N1, C),
assign(N2, C).

Answer Set Programming
Illustration: Graph Coloring

problem instance

node(a). node(b).
node(c). node(d).

edge(a, b). edge(b, c).
edge(a, c). edge(c, d).

color(red).
color(blue).
color(green).

problem encoding

19

For each node 𝑁: nondeterministically pick and

assign exactly 1 color 𝐶 among all existing colors.

If nodes 𝑁1 and 𝑁2 form an edge, they should never

be assigned the same color 𝐶.

Ontology

% Type TWarrior <: TPerson belongs to a fantasy setting.
type(setting(fantasy), t_warrior, t_person).

% Relation Slays(slayer: TWarrior, victim: TMonster) belongs to a fantasy setting.
relation(setting(fantasy), r_slays(t_warrior, t_monster)).

% Arguments slayer and victim in Slays relation can only be adversaries in the plot.
only_relationship(r_slays, adversary(1, 2)).

% TotalCount(total: TCountable, count1: TCountable, count2: TCountable)
relation(setting(common), r_total_count(t_countable, t_countable, t_countable)).

% TotalCount mathematically represents the tree “total = count1 + count2”.
math_skeleton(r_total_count, eq(1, plus(2, 3))).

20

=

+

arg1

arg2

arg3

Total:

𝟏

𝟐 𝟑

Relation ≃ Equation

Fact ⊨ Relation
⟹ Fact ⊨ Equation

21

Ontology helps us generate plausible situations

…but plausible situation ≠ engaging narrative!

of satisfying answer sets: up to 109. Most are insensible.

22

Step 3: Discourse Tropes

• Math: 𝑥 = 𝑦 + 12
• Setting: Fantasy

• Character: Ellie

Tropes = library constraints:

• “Whenever 𝐴 slays 𝐵,

𝐴 gets everything 𝐵 had.”

• “Whenever 𝐴 acquires 𝐶,

𝐴 adds 𝐶 to her possessions.”

• “If 𝐴 is slain, it happens after

all her other actions.”

23

Step 3: Discourse Tropes

discourse(
forall(vars(m, w),

premise(r_slays(w, m)),
exists(vars(t),

conclusion(r_owns(m, t))))).

24

“A warrior slays a monster only if the monster has some treasures.”

∀𝑚,𝑤: Slays 𝑚,𝑤 ⟹ ∃𝑡: Owns(𝑚, 𝑡)

Discourse trope validation

∀ entities 𝑥 ⊂ ℰ: Φ 𝑥 ⟹ ∃ 𝑦 ⊂ ℰ: Ψ 𝑥, 𝑦

∃ graph 𝒢 = ℰ, ℱ : Valid 𝒢 ∧ Fits 𝒢, 𝑅𝑒𝑞𝑠 ∧

25

Discourse trope validation

∀ entities 𝑥 ⊂ ℰ: Φ1 𝑥 ⟹ ∃ 𝑦 ⊂ ℰ: Ψ1 𝑥, 𝑦 ∧

∃ graph 𝒢 = ℰ, ℱ : Valid 𝒢 ∧ Fits 𝒢, 𝑅𝑒𝑞𝑠 ∧

∀ entities 𝑥 ⊂ ℰ: Φn 𝑥 ⟹ ∃ 𝑦 ⊂ ℰ: Ψn 𝑥, 𝑦

⋮

L
ib

rary

3 Boolean quantifiers (3QBF) ⟹ Beyond the capabilities of ASP (not in NP)!

26

Saturation technique

• Consider 2QBF problem: ∀𝑎, 𝑏: Acquires 𝑎, 𝑏 → Owns(𝑎, 𝑏)
 Eliminated innermost ∃ by skolemization (polynomial blowup only)

• Apply disjunctive ASP: 𝑝1 ∨ ⋯∨ 𝑝𝑘 ← 𝑞.

• Disjunctive ASP has subset minimality semantics:

If both 𝑀1 and 𝑀2 are valid answer sets and 𝑀1 ⊂ 𝑀2

then never return 𝑀2

[Eiter, Ianni, Krennwallner 2009] 27

Saturation technique

discourse(forall(vars(a, b),
premise(implies(acquires(a, b),

owns(a, b))))).

bind(V, E): entity(E) ← var(V).

sat(Xs, Tr) ← …

valid ← discourse(Xs, Tr), sat(Xs, Tr).

bind(V, E) ← valid, var(V), entity(E).

← not valid.

var(a). var(b).

28[Eiter, Ianni, Krennwallner 2009]

Saturation technique

discourse(forall(vars(a, b),
premise(implies(acquires(a, b),

owns(a, b))))).

bind(V, E): entity(E) ← var(V).

sat(Xs, Tr) ← …

valid ← discourse(Xs, Tr), sat(Xs, Tr).

bind(V, E) ← valid, var(V), entity(E).

← not valid.

(Disjunctively) assign each

formal variable (“a” & “b”)

to some entity in the graph

29[Eiter, Ianni, Krennwallner 2009]

Saturation technique

discourse(forall(vars(a, b),
premise(implies(acquires(a, b),

owns(a, b))))).

bind(V, E): entity(E) ← var(V).

sat(Xs, Tr) ← …

valid ← discourse(Xs, Tr), sat(Xs, Tr).

bind(V, E) ← valid, var(V), entity(E).

← not valid.

Check whether the trope

𝑇𝑟 is satisfied under the

current variable assignment

30[Eiter, Ianni, Krennwallner 2009]

Saturation technique

discourse(forall(vars(a, b),
premise(implies(acquires(a, b),

owns(a, b))))).

bind(V, E): entity(E) ← var(V).

sat(Xs, Tr) ← …

valid ← discourse(Xs, Tr), sat(Xs, Tr).

bind(V, E) ← valid, var(V), entity(E).

← not valid.

If the trope is not satisfied,

the assignment is invalid

31[Eiter, Ianni, Krennwallner 2009]

Saturation technique

discourse(forall(vars(a, b),
premise(implies(acquires(a, b),

owns(a, b))))).

bind(V, E): entity(E) ← var(V).

sat(Xs, Tr) ← …

valid ← discourse(Xs, Tr), sat(Xs, Tr).

bind(V, E) ← valid, var(V), entity(E).

← not valid.

If the trope is satisfied

(under 1 assignment only!),

saturate the answer set:

include all possible facts

bind(V, E) into it.

32[Eiter, Ianni, Krennwallner 2009]

Saturation technique

bind(a, knight).
bind(b, 12 chests).

valid

bind(a, knight)

bind(b, knight) bind(a, dragon)

bind(a, 12 chests)

bind(b, x)

𝑀

bind(a, knight).
bind(b, dragon).

valid
…

33[Eiter, Ianni, Krennwallner 2009]

Saturation technique

bind(a, knight).
bind(b, 12 chests).

valid

bind(a, knight)

bind(b, knight) bind(a, dragon)

bind(a, 12 chests)

bind(b, x)

bind(a, knight).
bind(b, dragon).

valid
…

𝑀 is a unique

answer set iff

the trope is

valid
34[Eiter, Ianni, Krennwallner 2009]

Saturation technique

bind(a, knight).
bind(b, 12 chests).

valid

bind(a, knight)

bind(b, knight) bind(a, dragon)

bind(a, 12 chests)

bind(b, x)

𝑀

bind(a, knight).
bind(b, dragon).

valid
…

bind(a, dragon).
bind(b, sheep).

not valid

✘

35[Eiter, Ianni, Krennwallner 2009]

Problem Generator

Problem Logic
Generation

• Plot generation

• Discourse tropes

Natural Language
Generation

• Sentence ordering

• Reference resolution

36

Natural Language Generation

Dragon Smaug has 12 chests of treasures.

Knight Ellie has 5 chests of treasures.

Knight Ellie slays Dragon Smaug.

Knight Ellie takes 12 chests of treasures.

How many chests of treasures does Knight Ellie have?

37

Natural Language Generation: Entity References

Dragon Smaug has 12 chests of treasures.

Knight Ellie has 5 chests of treasures.

She slays the dragon.

Ellie takes his treasures.

How many chests does the knight have?

References should be:

• non-repetitive = “describe the entity with different features every time”

• unambiguous = “differ from entities mentioned previously in at least one feature”

38

Final problem

Dragon Smaug has 12 chests of treasures.

Knight Ellie has 5 chests of treasures.

She slays the dragon, and takes his treasures.

How many chests does the knight have?

39

Evaluation

• Focus on content quality, not personalization effects

• 25 Singapore Math problems vs. 25 autogenerated problems
(with equivalent complexity distribution)

• Two MTurk studies, 1000 participants each:

A. Mathematical applicability (solution time, correctness)

B. Linguistic aspects (subject-evaluated, Likert scale)

40

Mathematical applicability

41

Generated

No statistically significant difference in solving times or correctness rates!

(78% for textbook [𝜇 = 220 𝑠], 73% for generated [𝜇 = 232 𝑠])

Textbook

Linguistic comprehensibility

Forced-choice Likert scale (1 = “Strong minus”, 4 = “Strong plus”):

1. How comprehensible is the problem? How well did you understand the plot?

2. How logical/natural is the sentence order?

3. When the problem refers to an actor (e.g. with a pronoun, a name), is it clear who
is being mentioned?

4. Do the numbers in the problem fit its story (e.g. it would not make sense for a
knight to be 5 years old)?

42

Expectation: generated problems are noticeably worse (they are generated!).

Goal: they are still comprehensible above a comfortable threshold (mean ≥ 3).

Reality: Mean rating for generated: 𝟑. 𝟒𝟓 − 𝟑. 𝟔𝟓
Mean rating for textbook: 𝟑. 𝟗𝟎 − 𝟑. 𝟗𝟐

Summary

• Problem Generation = synthesis of constrained logical graphs
• Domain-independent

• Sensible (thanks to discourse tropes)

• State-of-the-art quality problems
• As solvable as textbook

• Slightly more artificial language (as expected)

• Total control over the complexity dimensions
• Customized problem progression

• Personalization

• What’s next? Adaptive curriculum!

• Thank you!
43

polozov@cs.washington.edu

#43

mailto:polozov@cs.washington.edu

Backup

Plot generation as Graph isomorphism

1 { entity_type(E, T): concrete_type(T) } 1 ← entity(E).
instanceof(E, T) ← entity_type(E, T1), subtype(T1, T).

1 { fact_relation(F, R): relation(R) } 1 ← fact(F).

1 { fact_argument(F, K, E): instanceof(E, T) } 1 ←
fact_relation(F, R),
K = 1..@arity(R),
relation_param_type(R, K, T).

models(Eq, F) ← fact_relation(F, R), math_skeleton(R, S),
shape_matches(Eq, F, S).

← equation(Eq), #count { F: matches(Eq, F) } == 0.

45

Plot generation as Graph isomorphism

1 { entity_type(E, T): concrete_type(T) } 1 ← entity(E).
instanceof(E, T) ← entity_type(E, T1), subtype(T1, T).

1 { fact_relation(F, R): relation(R) } 1 ← fact(F).

1 { fact_argument(F, K, E): instanceof(E, T) } 1 ←
fact_relation(F, R),
K = 1..@arity(R),
relation_param_type(R, K, T).

models(Eq, F) ← fact_relation(F, R), math_skeleton(R, S),
shape_matches(Eq, F, S).

← equation(Eq), #count { F: matches(Eq, F) } == 0.

Entities are object nodes in the plot graph.

Pick a single concrete type 𝑇 for each entity 𝐸.

46

Plot generation as Graph isomorphism

1 { entity_type(E, T): concrete_type(T) } 1 ← entity(E).
instanceof(E, T) ← entity_type(E, T1), subtype(T1, T).

1 { fact_relation(F, R): relation(R) } 1 ← fact(F).

1 { fact_argument(F, K, E): instanceof(E, T) } 1 ←
fact_relation(F, R),
K = 1..@arity(R),
relation_param_type(R, K, T).

models(Eq, F) ← fact_relation(F, R), math_skeleton(R, S),
shape_matches(Eq, F, S).

← equation(Eq), #count { F: matches(Eq, F) } == 0.

Facts are actions nodes in the plot graph.

For each fact 𝐹, pick a single relation 𝑅 that it represents.

47

Plot generation as Graph isomorphism

1 { entity_type(E, T): concrete_type(T) } 1 ← entity(E).
instanceof(E, T) ← entity_type(E, T1), subtype(T1, T).

1 { fact_relation(F, R): relation(R) } 1 ← fact(F).

1 { fact_argument(F, K, E): instanceof(E, T) } 1 ←
fact_relation(F, R),
K = 1..@arity(R),
relation_param_type(R, K, T).

models(Eq, F) ← fact_relation(F, R), math_skeleton(R, S),
shape_matches(Eq, F, S).

← equation(Eq), #count { F: matches(Eq, F) } == 0.

For each fact 𝐹 representing a 𝑘-ary relation 𝑅: pick 𝑘 entities as arguments.

Ensure that they inherit the expected parameter types of 𝑅.

48

Plot generation as Graph isomorphism

1 { entity_type(E, T): concrete_type(T) } 1 ← entity(E).
instanceof(E, T) ← entity_type(E, T1), subtype(T1, T).

1 { fact_relation(F, R): relation(R) } 1 ← fact(F).

1 { fact_argument(F, K, E): instanceof(E, T) } 1 ←
fact_relation(F, R),
K = 1..@arity(R),
relation_param_type(R, K, T).

models(Eq, F) ← fact_relation(F, R), math_skeleton(R, S),
shape_matches(Eq, F, S).

← equation(Eq), #count { F: matches(Eq, F) } == 0.

A fact 𝐹 models an equation 𝐸𝑞 if it represents a mathematical relation 𝑅 with a

skeleton 𝑆 that is isomorphic to the equation tree.

Forbid graphs without any facts modelling the equation.

49

Linguistic comprehensibility

50

Equation generation

51

node(1..5). operator(plus; eq).

% Assign an operator and 2 arguments to some nodes.
0 { node_op(N, O): operator(O) } 1 ← node(N).

1 { node_arg(N, K, A): node(A) } 1 ← node_op(N, _), K = 1..2.

root(N) ← node(N), #count { P: node_arg(P, _, N) } == 0.

% Nodes should form a tree with one root, which represents a “=“.
← #count { N: root(N) } != 1.
← root(N), not node_op(N, eq).
← node_arg(N, _, A), N > A.
← node(A), #count { N: node_arg(N, _, A) } > 1.

% The equation should match the given math requirements…

