LaSEWeb: Automating Search Strategies over Semi-Structured Web Data

Oleksandr Polozov University of Washington polozov@cs.washington.edu

Motivation

A significant percent of search queries constitute repetitive tasks. Two most common examples are:

- 1. Batch data extraction, done by end-users.
- 2. Development of micro-segments of factoid question answering in search engines.

Typical solutions involve:

- Using a structured database (e.g. FreeBase) (limited in content; hard-coded; time-insensitive)
- Writing a data mining script (fragile; inapplicable for end-users)

Both solutions do not preserve any of the following end-users' search process patterns:

- Checking multiple webpages/answer candidates
- Exploring the context related to each answer
- Utilizing a semi-structured webpage format

Problem definition

A Web program ${\cal P}$ is a parameterized query that

- takes a tuple of user **query arguments** $ec{v}$ and returns a set of:
- answer strings a_i
- ranked by their **confidence** β_i
- with a set of the corresponding source URLs U_i .

Workflow

Sumit Gulwani Microsoft Research sumitg@microsoft.com

LaSEWeb Query Language

A semantic scripting language for repetitive Web mining, based on the patterns in humans' search strategies. The set of patterns is modular, extensible, and is implemented using the state-of-the-art ML/NLP algorithms.

LASEWEB query $\mathcal{Q} := FW(\mathcal{B}, \Psi) \mid \mathcal{Q}_1 \lor \mathcal{Q}_2$
Visual expression $\mathcal{B} := \mathcal{S} \mid Union(\mathcal{B}_1, \mathcal{B}_2) \mid \eta : \mathcal{B}$
Visual constraint $\Psi := \text{Nearby}(\eta_1, \eta_2) \text{Emphasized}(\eta) \text{Lag}$
$ \Psi_1 \land \Psi_2 \Psi_1 \lor \Psi_2 \neg \Psi $ true fal
Direction $d \in \{Up, Down, Left, Right\}$
Structural expression $S := \mathcal{L} VLOOKUP(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3) AttrLe$
Linguistic expression $\mathcal{L} := \text{Ling}(\mathcal{E}, \Phi) \mid \mathcal{L}_1 \lor \mathcal{L}_2$
Linguistic pattern $\mathcal{E} := \mathcal{E}^+ \mid \mathcal{E}^* \mid \mathcal{E}_2 \mid \mathcal{E}_1 \mid \mathcal{E}_2 \mid \ell : \mathcal{E} \mid Word$
ConstWord(s) ConstPhrase(s_1, \ldots, s_n
$ $ Syn $(s) $ POS $(p) $ Entity $(e) $ NP $ \dots$
Linguistic constraint $\Phi := SameSentence(\ell_1, \ell_2) Regex(\ell, s) $.
$ \Phi_1 \land \Phi_2 \Phi_1 \lor \Phi_2 \neg \Phi $ true false
String $s := w v_k$ Part of speech $p \in \{Noun, Verb, Pre$
ID labels $\ell, \eta := w$ Entity type $e \in \{\text{Person}, \text{Org}, \text{Plate}\}$

LaSEWeb Search Algorithm

Given:	• Seed query function $a(\vec{v})$	"email" → "email inv
	• Similarity metric $\sigma(s_1, s_2)$	"Sumit Gulwani" ≈ "
	• LaSEWeb query Q	see example \rightarrow
	• Answer label ℓ_a	a subexpression of Q
0:	1. Search the Web for top- k relevant webpages using	
	Match the LaSEWeb query on each webpage and each webpage	
	3. Cluster the resulting answer candidates based on	

4. Rank the clusters and select representative answers.

function SEARCH($\mathcal{P} = \langle q, \sigma, \mathcal{Q}, \ell_a \rangle, \vec{v}$) $U \leftarrow$ the results of Bing on $q(\vec{v})$ Substitute v_k in \mathcal{Q} with values from \vec{v} // set of clusters, $C_i = \{\langle s_k, \{u_j\}_{j=1}^{n_{ik}} \rangle\}_{k=1}^{m_i}$ $\mathcal{C} \leftarrow \emptyset$ for all URLs $u_j \in U$ do $\mathcal{N} \leftarrow \text{the <body> node of } u_i$ $S_j \leftarrow \{M[\ell_a] \mid M \text{ is the result of executing } \mathcal{Q} \text{ on } \mathcal{N}\}$ 6 for all answer strings $s_k \in S_j$ do 7: $C_j \leftarrow \{\langle s_k, \{u_j\}\rangle\}$ for all $C \in \mathcal{C}$ such that $\exists s' \in C : \sigma(s_k, s')$ do Merge C_i with C 10: $\mathcal{C} \leftarrow \mathcal{C} \cup \{C_j\}$ 11:for all final clusters $C_i \in \mathcal{C}$ do 12: $a_i \leftarrow$ the most frequent string representation $s_k \in C_i$ 13: $\beta_i \leftarrow \frac{1}{|U|} \sum_{j=1}^{|\mathcal{I}|} \sum_{s \in C_i}^{|\mathcal{L}|} \frac{c(s, u_j)}{|S_j|}$ where: 14: $c(s, u_j) = \#$ of times s was found at URL u_j $U_i \leftarrow$ union of all source URLs for all $s_k \in C_i$ 15: yield return $\langle a_i, \beta_i, U_i \rangle$ 16:

* The first author did this work during an internship at Microsoft Research Redmond

[1] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In POPL, 2011. [2] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information extraction systems by Gibbs sampling. In ACL, 2005. [3] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In ACL, 2003.

Microsoft[®] Research

[4] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In HLT-NAACL, 2003. Choudhury, J. Gao, H. Suzuki, K. Toutanova, M. Gamon, W.-t. Yih, L. Vanderwende, and C. Cherry. MSR SPLAT, a language analysis toolkit. In ACL, 2012 [6] W.-t. Yih, G. Zweig, and J. C. Platt. Polarity inducing latent semantic analysis. In ACL, 2012.

